Dr.-Ing. Markus Hillemann
- Wissenschaftlicher Mitarbeiter
- Gruppe: Machine Vision Metrology
- Raum: 029/1
CS 20.40 - markus hillemann ∂ kit edu
Biographie
seit 05.2020 | Wissenschaftlicher Mitarbeiter am IPF (Machine Vision Metrology) |
02.2020 | Dissertation: "Selbstkalibrierung mobiler Multisensorsysteme mittels geometrischer 3D-Merkmale" |
03.2016 - 02.2020 | Doktorand und Wissenschaftlicher Mitarbeiter am IPF sowie externer Mitarbeiter am Fraunhofer Institut für Optronik, Systemtechnik und Bildauswertung (IOSB) in Ettlingen |
2015 | Masterarbeit: "Untersuchungen einer Erweiterung des Kanade-Lucas-Tomasi-Feature-Trackers für Bilder mit bekannter radialer Verzeichnung" am Fraunhofer Institut für Optronik, Systemtechnik und Bildauswertung (IOSB) |
2014 - 2016 | Wissenschaftliche Hilfskraft am Fraunhofer IOSB |
2013 - 2015 | Master-Studium der Geodäsie und Geoinformatik am KIT |
2013 | Bachelorarbeit: "Untersuchung zur Berechnung der Eigenbewegung eines Kinect-Sensors mit dem ICP-Algorithmus" am Institut für Photogrammetrie und Fernerkundung (IPF) des KIT |
2010 - 2014 | Wissenschaftliche Hilfskraft am Geodätischen Institut Karlsruhe (GIK) des KIT |
2009 - 2013 | Bachelor-Studium der Geodäsie und Geoinformatik am Karlsruher Institut für Technologie (KIT) |
Forschungsschwerpunkte
- Entwicklung und Kalibrierung von Multisensorsystemen (z.B. Kameras und Laserscanner)
- Positionsbestimmung von Multisensorplattformen (z.B. UAVs)
- Simultaneous Localization and Mapping (SLAM)
- (Nahbereichs-) Photogrammetrie und Industrielle Bildverarbeitung
Publikationen
2024
-
HoloGS: Instant Depth-based 3D Gaussian Splatting with Microsoft HoloLens 2
Jäger, M.; Kapler, T.; Feßenbecker, M.; Birkelbach, F.; Hillemann, M.; Jutzi, B.
2024. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-2-2024, 159 – 166. doi:10.5194/isprs-archives-XLVIII-2-2024-159-2024 -
Uncertainty Quantification with Deep Ensembles for 6D Object Pose Estimation
Wursthorn, K.; Hillemann, M.; Ulrich, M.
2024. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, X-2-2024, 223–230. doi:10.5194/isprs-annals-X-2-2024-223-2024 -
DUDES: Deep Uncertainty Distillation using Ensembles for Semantic Segmentation
Landgraf, S.; Wursthorn, K.; Hillemann, M.; Ulrich, M.
2024. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 92 (2), 101–114. doi:10.1007/s41064-024-00280-4 -
HoloGS: Instant Depth-based 3D Gaussian Splatting with Microsoft HoloLens 2
Jäger, M.; Kapler, T.; Feßenbecker, M.; Birkelbach, F.; Hillemann, M.; Jutzi, B.
2024. doi:10.48550/arXiv.2405.02005 -
Novel View Synthesis with Neural Radiance Fields for Industrial Robot Applications
Hillemann, M.; Langendörfer, R.; Heiken, M.; Mehltretter, M.; Schenk, A.; Weinmann, M.; Hinz, S.; Heipke, C.; Ulrich, M.
2024. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-2-2024, 137–144. doi:10.5194/isprs-archives-XLVIII-2-2024-137-2024 -
Uncertainty-aware Cross-Entropy for Semantic Segmentation
Landgraf, S.; Hillemann, M.; Wursthorn, K.; Ulrich, M.
2024. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, X-2-2024, 129–136. doi:10.5194/isprs-annals-X-2-2024-129-2024 -
Efficient Multi-task Uncertainties for Joint Semantic Segmentation and Monocular Depth Estimation
Landgraf, S.; Hillemann, M.; Kapler, T.; Ulrich, M.
2024. arxiv. doi:10.48550/arXiv.2402.10580 -
Uncertainty-Aware Hand–Eye Calibration
Ulrich, M.; Hillemann, M.
2024. IEEE Transactions on Robotics, 40, 573–591. doi:10.1109/TRO.2023.3330609
2023
-
Semantic Mapping and Autonomous Navigation for Agile Production System
Zhou, B.; Klein, J.-F.; Wang, B.; Hillemann, M.
2023. 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), Auckland, New Zealand, 26-30 August 2023, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/CASE56687.2023.10260623 -
Dataset for the Segmentation of Industrial Burner Flames
Landgraf, S.; Hillemann, M.; Ulrich, M.; Aberle, M.; Jung, V.
2023, Juni 20. doi:10.5445/IR/1000159497 -
U-CE: Uncertainty-aware Cross-Entropy for Semantic Segmentation
Landgraf, S.; Hillemann, M.; Wursthorn, K.; Ulrich, M.
2023. arxiv. doi:10.48550/arXiv.2307.09947 -
Segmentation of Industrial Burner Flames: A Comparative Study from Traditional Image Processing to Machine and Deep Learning
Landgraf, S.; Hillemann, M.; Aberle, M.; Jung, V.; Ulrich, M.
2023. doi:10.5445/IR/1000159876 -
DUDES: Deep Uncertainty Distillation using Ensembles for Semantic Segmentation
Landgraf, S.; Wursthorn, K.; Hillemann, M.; Ulrich, M.
2023
2022
-
Beat the MArVIN - Industrieroboter MArVIN lernt Geschicklichkeitsspiel "der heiße Draht"
Wursthorn, K.; Hillemann, M.; Ulrich, M.
2022. doi:10.5445/IR/1000150338 -
Evaluation of self-supervised learning approaches for semantic segmentation of industrial burner flames
Landgraf, S.; Kühnlein, L.; Hillemann, M.; Hoyer, M.; Keller, S.; Ulrich, M.
2022. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2022, 601–607. doi:10.5194/isprs-archives-XLIII-B2-2022-601-2022 -
Comparison of uncertainty quantification methods for CNN-based regression
Wursthorn, K.; Hillemann, M.; Ulrich, M.
2022. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2022, 721–728. doi:10.5194/isprs-archives-XLIII-B2-2022-721-2022
2021
-
Generic Hand–Eye Calibration of Uncertain Robots
Ulrich, M.; Hillemann, M.
2021. IEEE International Conference on Robotics and Automation (ICRA), 30 May-5 June 2021, 11060–11066, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ICRA48506.2021.9560823
2020
-
Selbstkalibrierung mobiler Multisensorsysteme mittels geometrischer 3D-Merkmale. Dissertation
Hillemann, M.
2020, November 2. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000125412
2019
-
Impact of different trajectories on extrinsic self-calibration for vehicle-based mobile laser scanning systems
Hillemann, M.; Meidow, J.; Jutzi, B.
2019. The international archives of photogrammetry, remote sensing and spatial information sciences, XLII-2/W16, 119–125. doi:10.5194/isprs-archives-XLII-2-W16-119-2019 -
Automatic Extrinsic Self-Calibration of Mobile Mapping Systems Based on Geometric 3D Features
Hillemann, M.; Weinmann, M.; Mueller, M. S.; Jutzi, B.
2019. Remote sensing, 11 (16), Article: 1955. doi:10.3390/rs11161955
2018
-
Combining independent visualization and tracking systems for augmented reality
Hübner, P.; Weinmann, M.; Hillemann, M.; Jutzi, B.; Wursthorn, S.
2018. 2018 ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 455–462, International Society for Photogrammetry and Remote Sensing (ISPRS). doi:10.5194/isprs-archives-XLII-2-455-2018
2017
-
UCalMiCeL - Unified Intrinsic and Extrinsic Calibration of a Multi-Camera-System and a Laserscanner
Hillemann, M.; Jutzi, B.
2017. 4th ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences - International Conference on Unmanned Aerial Vehicles in Geomatics, Bonn, Germany, 4.-7. September 2017. Ed.: C. Stachniss. Vol. IV-2/W3., 49–57, ISPRS. doi:10.5194/isprs-annals-IV-2-W3-17-2017 -
Point cloud analysis for UAV-borne laser scanning with horizontally and vertically oriented line scanners - Concept and first results
Weinmann, M.; Müller, M. S.; Hillemann, M.; Reydel, N.; Hinz, S.; Jutzi, B.
2017. 4th ISPRS International Conference on Unmanned Aerial Vehicles in Geomatics, Bonn, Germany, 4th - 7th September 2017, 399–406, International Society for Photogrammetry and Remote Sensing (ISPRS). doi:10.5194/isprs-archives-XLII-2-W6-399-2017
2016
-
Concept for an airborne real-time ISR system with multi-sensor 3D data acquisition
Haraké, L.; Schilling, H.; Blohm, C.; Hillemann, M.; Lenz, A.; Becker, M.; Keskin, G.; Middelmann, W.
2016. Electro-Optical and Infrared Systems: Technology and Applications XIII, SPIE Security + Defence, 2016, Edinburgh, United Kingdom, 26-29 September 2016. Ed.: D. A. Huckridge, 998709, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2241051