Prof. Dr.-Ing. Markus Ulrich
- Machine Vision Metrology
- room: 030
CS 20.40 - phone: +49 721 608-47410
- markus ulrich ∂ kit edu
- www.ipf.kit.edu
- Englerstr. 7
76131 Karlsruhe
Biography
Since 1.4.2020 | Professor for Machine Vision Metrology at the Institute for Photogrammetry and Remote Sensing of the Karlsruhe Institute of Technology (KIT) |
2017 – 2019 | Privatdozent at the KIT-Department of Civil Engineering, Geo and Environmental Sciences |
2013 – 2020 | Invention and patent manager at MVTec Software GmbH, Munich |
2013 – 2017 | Lecturer for the subject "Industrial Image Processing and Machine Vision " KIT-Department of Civil Engineering, Geo and Environmental Sciences |
2008 – 2020 | Head of the research team at MVTec |
2005 – 2020 | Lecturer for the subject "Close-Range Photogrammetry" at the Department of Civil, Geo and Environmental Engineering at the Technical University of Munich (TUM) |
2003 – 2008 | Software Engineer at MVTec |
2000 – 2003 | Research associate and PhD student at the Chair of Photogrammetry and Remote Sensing of the TUM in cooperation with MVTec |
Scientific Qualification
1.2.2017 | Postdoctoral lecture qualification (Habilitation) and award of teaching authorization for the subject "Machine Vision" at the KIT-Department of Civil Engineering, Geo and Environmental Sciences |
26.6.2003 | PhD degree (Dr.-Ing.) at the TUM Department of Civil, Geo and Environmental Engineering |
23.3.2000 | Diploma degree (Dipl.-Ing) in Geodesy |
1995 - 2000 | Study of Geodesy at TUM |
Main Research Topics
Machine Vision is a multifaceted discipline and includes aspects from optics (e.g. illumination, lenses), electrical engineering (e.g. sensor technology), mechanical engineering (e.g. industrial robots, optical inspection machines), computer science and software engineering (e.g. efficient implementations of innovative computer vision algorithms). This is also reflected in the research topics:
- Reliable detection and accurate position measurement of objects in images and 3D sensor data
- Camera models and calibration
- Machine learning in industrial applications for object inspection and robotics
- Object identification in images
- Surface inspection of objects in 2D and 3D sensor data
- Hand-eye calibration of industrial robots
Our research work often focuses on geodetic aspects such as reliability or accuracy. At the same time, 20 years of industrial experience serves as an important guide and ensures the innovative power of the newly developed processes.
Teaching
Teaching about methods and technologies that are actually used in practice in the professional field is important to provide a sound insight into machine vision metrology. Only in close exchange with the professional field can the requirements of the technologies be sufficiently considered and the students be taught appropriate skills. These requirements are therefore already imparted in the teaching and should play a fundamental and at the same time motivating role. The industrial context is also emphasized by exercises that are relevant in real applications.
The references of machine vision metrology to "classical" geodesy are emphasized and geodetic aspects (e.g. accuracy considerations and reliability statements) are explicitly considered. Within the framework of research-oriented teaching, students are involved in current research projects at the institute, which also allows scientific methods to be taught.
Activities
- Chair of the ISPRS Working Group II/9 "Vision Metrology"
- Editor of the DGPF Journal PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science for Photogrammetry
- Activities in VDI - The Association of German Engineers
- Member of the VDI/VDE-GMA Department FB 1 "Methodik der Mess- und Sensortechnik"
- Chair of the VDI/VDE-GMA Fachausschusses FA 1.13 "Neuronale Netze in der Sensordatenverarbeitung"
- Member VDI/VDE-GMA Fachausschuss FA 1.21 "Bildverarbeitung in Mess- u. Automatisierungstechnik"
-
Co-authership of the VDI-Statusreport
„Maschinelles Lernen in KMU: Künstliche Intelligenz im eigenen Unternehmen nutzen“, 2020 - Co-authership of the VDI-Statusreport
„Maschinelles Lernen: Künstliche Intelligenz mit neuronalen Netzen in optischen Mess- und Prüfsystemen“, 2019
Scientific Publications
-
Vision-guided robot calibration using photogrammetric methods
Ulrich, M.; Steger, C.; Butsch, F.; Liebe, M.
2024. ISPRS Journal of Photogrammetry and Remote Sensing, 218 (Part A), 645–662. doi:10.1016/j.isprsjprs.2024.09.037 -
Uncertainty Quantification with Deep Ensembles for 6D Object Pose Estimation
Wursthorn, K.; Hillemann, M.; Ulrich, M.
2024. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, X-2-2024, 223–230. doi:10.5194/isprs-annals-X-2-2024-223-2024 -
DUDES: Deep Uncertainty Distillation using Ensembles for Semantic Segmentation
Landgraf, S.; Wursthorn, K.; Hillemann, M.; Ulrich, M.
2024. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 92 (2), 101–114. doi:10.1007/s41064-024-00280-4 -
Novel View Synthesis with Neural Radiance Fields for Industrial Robot Applications
Hillemann, M.; Langendörfer, R.; Heiken, M.; Mehltretter, M.; Schenk, A.; Weinmann, M.; Hinz, S.; Heipke, C.; Ulrich, M.
2024. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-2-2024, 137–144. doi:10.5194/isprs-archives-XLVIII-2-2024-137-2024 -
Uncertainty-aware Cross-Entropy for Semantic Segmentation
Landgraf, S.; Hillemann, M.; Wursthorn, K.; Ulrich, M.
2024. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, X-2-2024, 129–136. doi:10.5194/isprs-annals-X-2-2024-129-2024 -
Efficient Multi-task Uncertainties for Joint Semantic Segmentation and Monocular Depth Estimation
Landgraf, S.; Hillemann, M.; Kapler, T.; Ulrich, M.
2024. arxiv. doi:10.48550/arXiv.2402.10580 -
Uncertainty-Aware Hand–Eye Calibration
Ulrich, M.; Hillemann, M.
2024. IEEE Transactions on Robotics, 40, 573–591. doi:10.1109/TRO.2023.3330609
-
Sensitivity analysis of AI-based algorithms for autonomous driving on optical wavefront aberrations induced by the windshield
Wolf, D. W.; Ulrich, M.; Kapoor, N.
2023. 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Paris, 25th December 2023, 4102–4111, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ICCVW60793.2023.00443 -
Novel developments of refractive power measurement techniques in the automotive world
Wolf, D. W.; Ulrich, M.; Braun, A.
2023. Metrologia, 60 (6), Article no: 064001. doi:10.1088/1681-7575/acf1a4 -
Windscreen Optical Quality for AI Algorithms: Refractive Power and MTF not Sufficient
Werner Wolf, D.; Ulrich, M.; Braun, A.
2023. 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5190–5197, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ITSC57777.2023.10421970 -
A comparison of learning-based approaches for the corrosion detection on barrels in industrial applications
Haitz, D.; Hübner, P.; Ulrich, M.; Jutzi, B.
2023. tm - Technisches Messen, 90 (7-8), 522–532. doi:10.1515/teme-2023-0009 -
Windscreen Optical Quality for AI Algorithms: Refractive Power and MTF not Sufficient
Wolf, D. W.; Ulrich, M.; Braun, A.
2023. arxiv. doi:10.48550/arXiv.2305.14513 -
U-CE: Uncertainty-aware Cross-Entropy for Semantic Segmentation
Landgraf, S.; Hillemann, M.; Wursthorn, K.; Ulrich, M.
2023. arxiv. doi:10.48550/arXiv.2307.09947 -
Segmentation of industrial burner flames: a comparative study from traditional image processing to machine and deep learning
Landgraf, S.; Hillemann, M.; Aberle, M.; Jung, V.; Ulrich, M.
2023. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, X-1/W1-2023, 953–960. doi:10.5194/isprs-annals-X-1-W1-2023-953-2023 -
Sensitivity Analysis of AI-Based Algorithms for Autonomous Driving on Optical Wavefront Aberrations Induced by the Windshield
Wolf, D. W.; Ulrich, M.; Kapoor, N.
2023. doi:10.5445/IR/1000162967 -
Combining Hololens with Instant-NeRFs: Advanced Real-Time 3D Mobile Mapping
Haitz, D.; Jutzi, B.; Ulrich, M.; Jäger, M.; Hübner, P.
2023. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-1/W1-2023, 167 – 174. doi:10.5194/isprs-archives-XLVIII-1-W1-2023-167-2023 -
Segmentation of Industrial Burner Flames: A Comparative Study from Traditional Image Processing to Machine and Deep Learning
Landgraf, S.; Hillemann, M.; Aberle, M.; Jung, V.; Ulrich, M.
2023. doi:10.5445/IR/1000159876 -
DUDES: Deep Uncertainty Distillation using Ensembles for Semantic Segmentation
Landgraf, S.; Wursthorn, K.; Hillemann, M.; Ulrich, M.
2023 -
Combining HoloLens with Instant-NeRFs: Advanced Real-Time 3D Mobile Mapping
Haitz, D.; Jutzi, B.; Ulrich, M.; Jäger, M.; Huebner, P.
2023. arxiv. doi:10.48550/arXiv.2304.14301
-
Semantic segmentation with small training datasets: A case study for corrosion detection on the surface of industrial objects
Haitz, D.; Hübner, P.; Ulrich, M.; Landgraf, S.; Jutzi, B.
2022. Forum Bildverarbeitung 2022. Ed.: T. Längle; M. Heizmann, 73–85, KIT Scientific Publishing -
Corrosion detection for industrial objects: from multi-sensor system to 5D feature space
Haitz, D.; Jutzi, B.; Hübner, P.; Ulrich, M.
2022. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B1-2022, 143–150. doi:10.5194/isprs-archives-XLIII-B1-2022-143-2022 -
Evaluation of self-supervised learning approaches for semantic segmentation of industrial burner flames
Landgraf, S.; Kühnlein, L.; Hillemann, M.; Hoyer, M.; Keller, S.; Ulrich, M.
2022. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2022, 601–607. doi:10.5194/isprs-archives-XLIII-B2-2022-601-2022 -
Comparison of uncertainty quantification methods for CNN-based regression
Wursthorn, K.; Hillemann, M.; Ulrich, M.
2022. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2022, 721–728. doi:10.5194/isprs-archives-XLIII-B2-2022-721-2022 -
Automatic Real-Time Pose Estimation of Machinery from Images
Bertels, M.; Jutzi, B.; Ulrich, M.
2022. Sensors, 22 (7), 2627. doi:10.3390/s22072627 -
Implementing machine learning: chances and challenges
Heizmann, M.; Braun, A.; Glitzner, M.; Günther, M.; Hasna, G.; Klüver, C.; Krooß, J.; Marquardt, E.; Overdick, M.; Ulrich, M.
2022. Automatisierungstechnik, 70 (1), 90–101. doi:10.1515/auto-2021-0149 -
A Multi-view Camera Model for Line-Scan Cameras with Telecentric Lenses
Steger, C.; Ulrich, M.
2022. Journal of Mathematical Imaging and Vision, 64, 105–130. doi:10.1007/s10851-021-01055-x
-
Generic Hand–Eye Calibration of Uncertain Robots
Ulrich, M.; Hillemann, M.
2021. IEEE International Conference on Robotics and Automation (ICRA), 30 May-5 June 2021, 11060–11066, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ICRA48506.2021.9560823 -
A Camera Model for Line-Scan Cameras with Telecentric Lenses
Steger, C.; Ulrich, M.
2021. International journal of computer vision, 129, 80–99. doi:10.1007/s11263-020-01358-3
-
Artificial intelligence with neural networks in optical measurement and inspection systems
Heizmann, M.; Braun, A.; Hüttel, M.; Klüver, C.; Marquardt, E.; Overdick, M.; Ulrich, M.
2020. Automatisierungstechnik, 68 (6), 477–487. doi:10.1515/auto-2020-0006
-
A comparison of shape-based matching with deep-learning-based object detection
Ulrich, M.; Follmann, P.; Neudeck, J.-H.
2019. Technisches Messen, 86 (11), 685–698. doi:10.1515/teme-2019-0076 -
A camera model for cameras with hypercentric lenses and some example applications
Ulrich, M.; Steger, C.
2019. Machine vision and applications, 30 (6), 1013–1028. doi:10.1007/s00138-019-01032-w
-
Machine Vision Algorithms and Applications
Steger, C.; Ulrich, M.; Wiedemann, C.
2018. Wiley-VCH Verlag -
MVTec D2S: Densely Segmented Supermarket Dataset
Follmann, P.; Böttger, T.; Härtinger, P.; König, R.; Ulrich, M.
2018. Computer Vision – ECCV 2018. Ed.: V. Ferrari, 581–597, Springer. doi:10.1007/978-3-030-01249-6_35
-
Subpixel-Precise Tracking of Rigid Objects in Real-Time
Böttger, T.; Ulrich, M.; Steger, C.
2017. Image Analysis. Part 1. Ed.: P. Sharma, 54–65, Springer-Verlag. doi:10.1007/978-3-319-59126-1_5 -
Introducing MVTec ITODD — A Dataset for 3D Object Recognition in Industry
Drost, B.; Ulrich, M.; Bergmann, P.; Härtinger, P.; Steger, C.
2017. 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), 2200–2208, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ICCVW.2017.257 -
Object recognition in machine vision. habilitation thesis
Ulrich, M.
2017. Karlsruher Institut für Technologie (KIT)
-
Hand-Eye Calibration of SCARA Robots Using Dual Quaternions
Ulrich, M.; Steger, C.
2016. Pattern recognition and image analysis, 16 (1), 231–239. doi:10.1134/S1054661816010272 -
Real-Time Texture Error Detection on Textured Surfaces with Compressed Sensing
Böttger, T.; Ulrich, M.
2016. Pattern recognition and image analysis, 26 (1), 88–94. doi:10.1134/S1054661816010053
-
Real-Time Texture Error Detection on Textured Surfaces With Compressed Sensing
Böttger, T.; Ulrich, M.
2015. Proceedings of the OGRW 2014. Ed.: P. Dietrich, 205–210, University of Koblenz-Landau -
Hand-Eye Calibration of SCARA Robots
Ulrich, M.; Heider, A.; Steger, C.
2015. Proceedings of the OGRW2014. 9th Open German-Russian Workshop on Pattern Recognition and Image Understanding. Ed.: D. Paulus, 117–122, University of Koblenz-Landau
-
Combining Scale-Space and Similarity-Based Aspect Graphs for Fast 3D Object Recognition
Ulrich, M.; Wiedemann, C.; Steger, C.
2012. IEEE transactions on pattern analysis and machine intelligence, 34 (10), 1902–1914. doi:10.1109/TPAMI.2011.266
-
機器視覺演算法與應用 (Jīqì Shìjué Suàn Fǎ Yǔ Yìngyòng — Machine Vision Algorithms and Applications)
Steger, C.; Ulrich, M.; Wiedemann, C.
2011. Photon-Tech Instruments Co -
Real-time object detection with sub-pixel accuracy using the level set method
Burkert, F.; Butenuth, M.; Ulrich, M.
2011. The photogrammetric record, 26 (134), 154–170. doi:10.1111/j.1477-9730.2011.00633.x
-
Model globally, match locally: Efficient and robust 3D object recognition
Drost, B.; Ulrich, M.; Navab, N.; Ilic, S.
2010. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 998–1005, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/CVPR.2010.5540108 -
Evaluation of efficient methods for optical flow computation - Evaluierung effizienter Methoden zur Berechnung des optischen Flusses
Frey, D.; Ulrich, M.; Hinz, S.
2010. Photogrammetrie - Fernerkundung - Geoinformation, 10 (1), 5–16. doi:10.1127/1432-8364/2010/0036
-
CAD-Based Recognition of 3D Objects in Monocular Images
Ulrich, M.; Wiedemann, C.; Steger, C.
2009. IEEE International Conference on Robotics and Automation, 1191–1198, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ROBOT.2009.5152511
-
画像処理アルゴリズムと実践アプリケーション (Gazou Shori Algorithm to Jissen Application — Image Processing Algorithms and Applications)
Steger, C.; Ulrich, M.; Wiedemann, C.
2008. LinX Corporation -
机器视觉算法与应用 (Jīqì Shìjué Suàn Fǎ Yǔ Yìngyòng — Machine Vision Algorithms and Applications)
Steger, C.; Ulrich, M.; Wiedemann, C.
2008. Tsinghua University Press -
Recognition and Tracking of 3D Objects
Wiedemann, C.; Ulrich, M.; Steger, C.
2008. Pattern Recognition. Ed.: G. Rigoll, 132–141, Springer-Verlag. doi:10.1007/978-3-540-69321-5_14
-
Machine Vision Algorithms and Applications
Steger, C.; Ulrich, M.; Wiedemann, C.
2007. Wiley-VCH Verlag
-
Erkennung von zusammengesetzten Objekten in Bildern unter Echtzeit-Anforderungen
Ulrich, M.; Steger, C.; Baumgartner, A.; Ebner, H.
2004. Commemorative Volume for the 60th Birthday of Prof. Dr. Armin Grün, ETH Zürich, 251–259, Institute of Geodesy and Photogrammetry -
Erkennung von zusammengesetzten Objekten in Bildern unter Echtzeit-Anforderungen
Ulrich, M.; Steger, C.; Baumgartner, A.; Ebner, H.
2004. ZfV, 129 (3), 184–194
-
Hierarchical Real-Time Recognition of Compound Objects in Images
Ulrich, M.
2003. Verlag der Bayerischen Akademie der Wissenschaften in Kommission beim Verlag C.H. Beck -
Real-time object recognition using a modified generalized Hough transform
Ulrich, M.; Steger, C.; Baumgartner, A.
2003. Pattern recognition, 36 (11), 2557–2570. doi:10.1016/S0031-3203(03)00169-9
-
Empirical Performance Evaluation of Object Recognition Methods
Ulrich, M.; Steger, C.
2002. Empirical Evaluation Methods in Computer Vision. Ed.: H.I. Christensen, 62–76, World Scientific Publishing -
Performance Evaluation of 2D Object Recognition Techniques
Ulrich, M.; Steger, C.
2002. Technische Universität München (TUM) -
Automatic Hierarchical Object Decomposition for Object Recognition
Ulrich, M.; Baumgartner, A.; Steger, C.
2002. The international archives of photogrammetry, remote sensing and spatial information sciences, XXXIV-5/WGV/1, 99–104 -
Performance Comparison of 2D Object Recognition Techniques
Ulrich, M.; Steger, C.
2002. Proceedings of the ISPRS Commission III Symposium Photogrammetric Computer Vision, 368–374 -
Vorhersage der Erdorientierungs-Parameter unter Verwendung künstlicher Neuronaler Netze
Schuh, H.; Ulrich, M.; Egger, D.; Müller, J.; Schwegmann, W.
2002. Vorträge beim 4. DFG-Rundgespräch im Rahmen des Forschungsvorhabens Rotation der Erde zum Thema ’Wechselwirkungen im System Erde’. Ed.: H. Schuh, 87–89, Verlag der Bayerischen Akademie der Wissenschaften -
Prediction of Earth orientation parameters by artificial neural networks
Schuh, H.; Ulrich, M.; Egger, D.; Müller, J.; Schwegmann, W.
2002. Journal of geodesy, 76 (5), 247–258. doi:10.1007/s00190-001-0242-5
-
Prediction of Earth Orientation Parameters by Artificial Neural Networks
Schuh, H.; Ulrich, M.
2001. Journées Systèmes de Référence Spatio-Temporels : Paris, France, 18 - 20 Septembre 2000 ; J2000, une époque fondamentale pour les origines des systèmes de référence. [J2000, a fundamental epoch for origins of reference systems and astronomical models]. Ed.: N. Capitaine, 302–303, Observatoire de Paris -
Real-Time Object Recognition in Digital Images for Industrial Applications
Ulrich, M.; Steger, C.; Baumgartner, A.; Ebner, H.
2001. Technische Universität München (TUM) -
Real-Time Object Recognition Using a Modified Generalized Hough Transform
Ulrich, M.; Steger, C.; Baumgartner, A.; Ebner, H.
2001. Photogrammetrie - Fernerkundung - Geoinformation: Geodaten schaffen Verbindungen. Hrsg.: E. Seyfert, 571–578, DGPF -
新実践画像処理 (Shin Jissen Gazou Shori — Practical Image Processing, 2nd Edition)
Koshimizu, H.; Ishii, A.; Suga, Y.; Kaneko, S.; Hara, Y.; Murakami, K.; Umeda, K.; Murakami, N.; Tsujitani, J.; Bushimata, S.; Hirata, A.; Adachi, T.; Eckstein, W.; Steger, C.; Lückenhaus, M.; Ulrich, M.; Blahusch, G.
2001. LinX Corporation -
Real-Time Object Recognition in Digital Images for Industrial Applications
Ulrich, M.; Steger, C.; Baumgartner, A.; Ebner, H.
2001. Optical 3-D Measurement Techniques V. Ed.: A. Grün, 308–318, Vienna University of Technology
Further Publications
Landgraf, S.; Hillemann, M.; Ulrich, M.; Aberle, M.; Jung, V.
2023, June 20. doi:10.5445/IR/1000159497
Wursthorn, K.; Hillemann, M.; Ulrich, M.
2022. doi:10.5445/IR/1000150338
Dalheimer, L.; Fuge, R.; Gschwind, C.; Juretzko, M.; Landgraf, S.; Meid, F.; Naab, C.; Ulrich, M.; Weisgerber, J.
2021. doi:10.5445/IR/1000137359
Patents
-
Hand-eye calibration of camera-guided devices
-
EP 4094897 (publication date: 20.9.2023)
-
-
System and method for model adaptation
-
JP 6612822 (publication date: 27.11.2019)
-
US 10460472 (publication date: 29.10.2019)
-
-
System and method for efficient 3D reconstruction of objects with telecentric line-scan cameras
-
JP 7486740 (publication date: 20.5.2024)
-
EP 3896640 (publication date: 28.9.2022)
-
US 11328478 (publication date: 10.5.2022)
-
-
Recognition and pose determination of 3D objects in multimodal scenes
-
JP 6216508 (publication date: 18.10.2017)
-
CN 103729643 (publication date: 12.09.2017)
-
US 8994723 (publication date: 31.5.2015)
-
EP 2720171 (publication date: 8.4.2015)
-
-
Recognition and pose determination of 3D objects in 3D scenes
- CN 102236794 (publication date: 4.3.2015)
-
JP 5677798 (publication date: 25.2.2015)
-
US 8830229 (publication date: 9.9.2014)
-
EP 2385483 (publication date: 21.11.2012)
-
System and method for 3D object recognition
-
CN 101408931 (publication date: 20.2.2013)
-
US 8379014 (publication date: 19.2.2013)
-
EP 2048599 (publication date: 16.12.2009)
-
JP 4785880 (publication date: 30.4.2009)
-
-
System and methods for automatic parameter determination in machine vision
-
US 7953290 (publication date: 31.5.2011)
-
US 7953291 (publication date: 31.5.2011)
-
US 7751625 (publication date: 6.6.2010)
-
JP 4907219 (publication date: 4.10.2007)
-
-
Hierarchical component-based object recognition
-
JP 5330579 (publication date: 1.11.2012)
-
EP 1394727 (publication date: 12.10.2011)
- JP 4334301 (publication date: 30.9.2009)
-
JP 5329254 (publication date: 14.5.2009)
-
US 7239929 (publication date: 3.7.2007)
-